Assembly Site Transfer of Select Side by Side LFCSP at ASE Korea

Qualification Results Summary for Side by Side LFCSP at AEK

TeST	Specification	SAMPLE SIzE	RESULT
Temperature Cycle (TC)*	JEDEC JESD22-A104	3×77	PASS
Solder Heat Resistance (SHR)*	JEDEC/IPC J-STD-020	3×11	PASS
Highly Accelerated Stress Test	JEDEC JESD22-A110	3×77	PASS
High Temperature Storage (HTS)	JEDEC JESD22-A103	1×77	PASS
Unbiased Highly Accelerated Stress Test (UHAST)*	JEDEC JESD22-A118	3×77	PASS

* Preconditioned per JEDEC/IPC J-STD-020.

PCN 180036

ADGM1304 Data Sheet Changes

Rev.D to Rev.E

This document highlights the changes from the Rev. D to the Rev. E data sheet for the ADGM1304 SP4T MEMS switch with integrated driver.

In brief following changes are made from Rev D to Rev E data sheet.

- Wider operating voltage range
- Improved internal oscillator feedthrough noise
- Improved RON specification
- Added SPI functionality

For full product information and changes to pin configuration of the part please refer to the ADGM1304 Rev. E data sheet.

1. Specification changes from datasheet Rev. D to Rev. E

Table 1 outlines the datasheet specifications which are changed in Rev. E material as compared to Rev.D material. The changed specifications are highlighted in red font.

Table 2 outlines the datasheet specifications which are added to Rev.E material.
Table 3 outlines the datasheet specifications which are removed from Rev.D material.
2. Absolute Maximum Rating from datasheet Rev. D to Rev. E

Table 4 outlines the Absolute Maximum Rating comparison of the Rev. D to Rev. E material. The changed specifications are highlighted in red font.
3. Pin Configuration changes from datasheet Rev. D to Rev. E

Table 5 outlines the pin configuration comparison of the Rev. D to Rev. E material and Table 6 highlights pin function descriptions. All the changed pins configuration are highlighted in red font.
4. Typical Operating Circuit changes from datasheet Rev. D to Rev. E

Figure 3 and Figure 4 outlines the typical operating circuit comparison of the Rev. D to Rev. E material. There are no changes to typical operating circuit in parallel mode for both Rev D and Rev E material.

5. RON Drift

Table 7 outlines the RON drift specification. This section explains about RON performance and RON drift of the ADGM1304. The RON performance of the MEMS switch is affected by part to part variation, channel to channel variation, cycle actuations, settling time post turn on, bias voltage and Temperature changes.

SPECIFICATIONS CHANGED

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{AGND}=0 \mathrm{~V}, \mathrm{RFGND}=0 \mathrm{~V}$, all specifications minimum temperature $\left(\mathrm{T}_{\mathrm{MIN}}\right)$ to maximum temperature $\left(\mathrm{T}_{\mathrm{MAX}}\right)=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

${ }^{1}$ Typical specifications tested at $25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$.
${ }^{2}$ The 1 dB compression point (P 1 dB) is not reached up to the maximum power rating of the switch.
${ }^{3}$ Switch is settled after $75 \mu \mathrm{~s}$. Do not apply RF power between $0 \mu \mathrm{~s}$ to $75 \mu \mathrm{~s}$.
${ }^{4}$ Disable the internal oscillator to eliminate feedthrough.
 thereof (whichever is higher) is tested.
${ }^{6}$ Actuating the switch at $85^{\circ} \mathrm{C}$ and measuring RON at $25^{\circ} \mathrm{C}$ is the most severe condition for ADGM1304 RON drift over actuations.

SPECIFICATIONS ADDED

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{AGND}=0 \mathrm{~V}, \mathrm{RFGND}=0 \mathrm{~V}$, all specifications minimum temperature ($\mathrm{T}_{\mathrm{MIN}}$) to maximum temperature $\left(\mathrm{T}_{\mathrm{MAX}}\right)=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

${ }^{1}$ Typical specifications tested at $25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$.
${ }^{2}$ This section is intentionally left blank, for details see the ON Resistance (RON) Properties section for details
${ }^{3}$ Disable the internal oscillator to eliminate feedthrough.
${ }^{4}$ The spectrum analyzer setup is as follows: $\mathrm{RBW}=200 \mathrm{~Hz}$, video bandwidth $(\mathrm{VBW})=2 \mathrm{~Hz}$, $\mathrm{Span}=100 \mathrm{kHz}$, input attenuator $=0 \mathrm{~dB}$, the detector type is peak, and the maximum hold is off. The fundamental feedthrough noise or harmonic thereof (whichever is higher) is tested.
${ }^{5}$ For more details, see the Low Power Mode section.

SPECIFICATIONS REMOVED

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{AGND}=0 \mathrm{~V}, \mathrm{RFGND}=0 \mathrm{~V}$, all specifications minimum temperature ($\mathrm{T}_{\mathrm{MIN}}$) to maximum temperature $\left(\mathrm{T}_{\mathrm{MAX}}\right)=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

		Rev D			Rev E				
Parameter	Symbol	Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS Settling Rising Edge Falling Edge Wake up			40 8 0.55	1.2				$\mu \mathrm{s}$ $\mu \mathrm{s}$ ms	$50 \% \mathrm{INx}$ pin to 0.05 dB final IL value, 50Ω termination $50 \% \mathrm{INx}$ pin to 0.05 dB final IL value, 50Ω termination $\mathrm{C}_{\mathrm{CP}}=47 \mathrm{pF} ; 50 \% \mathrm{INx}$ pin to $90 \% \mathrm{RFx}$ pin
SWITCH PROPERTIES EXTCLK PROPERTIES EXTCLK Input Range EXTCLK Input High Voltage EXTCLK Input Low Voltage EXTCLK Input Current	$\mathrm{EV}_{\text {INH }}$ EVINL Elin_/Elinh	$\begin{aligned} & 20 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 23 \\ & \\ & 0.5 \\ & \pm 10 \end{aligned}$				MHz V V $\mu \mathrm{A}$	$\mathrm{EV}_{\text {IN }}=\mathrm{EV}_{\text {InL }}$ or $\mathrm{EV}_{\text {INH }}$
POWER REQUIREMENTS IDD Sleep Mode Current			1					$\mu \mathrm{A}$	

[^0]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

	Rev D	Rev E
Parameter	Rating	Rating
VDD to AGND	-0.3 V to +6V	-0.3 V to +6V
Digital Inputs ${ }^{1}$	$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA}$ (whichever occurs first)	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA (whichever occurs first)
DC Voltage Rating ${ }^{2}$	$\pm 10 \mathrm{~V}$	$\pm 7 \mathrm{~V}$
Current Rating ${ }^{2}$	250 mA	250 mA
RF Power Rating	37 dBm	37 dBm
Stand Off Voltage ${ }^{3}$		
	100 V (RFC pin)	$\pm 10 \mathrm{~V}$ (RFx to AGND)
	20 V (RFx pins)	$\pm 10 \mathrm{~V}$ (RFC to AGND)
		20 V (RFx to RFC)
Hot Switching ${ }^{4}$	OV	OV
EXTCLK Input Voltage	$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA}$ (whichever occurs first)	
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow Soldering (Pb-Free)		
Peak Temperature	260(+0/-5) ${ }^{\circ} \mathrm{C}$	260(+0/-5) ${ }^{\circ} \mathrm{C}$
Time at Peak	10 sec to 30 sec	10 sec to 30 sec
Temperature		
ESD		
$(H B M)^{5}$		
RF1 to RF4 Pins and RFC	100 V	100 V
Pin		
All Other Pins	2.5 kV	2.5 kV
Field-Induced ChargedDevice Model (FICDM) ${ }^{6}$		
All Pins	500 V	500 V
Group D		
Mechanical Shock ${ }^{7}$	1500 g with 0.5 ms pulse	1500 g with 0.5 ms pulse
Vibration	20 Hz to 2000 Hz acceleration at 50 g	20 Hz to 2000 Hz acceleration at 50 g
Constant Acceleration	30,000 g	$30,000 \mathrm{~g}$

[^1]
PIN CONFIGURATION CHANGES FROM REV.D TO REV.E

Table 5. Pin Configuration Changes

Rev.D	Rev.E
NOTES 1. EXPOSED PAD 1. EP1 IS INTERNALLY CONNECTED TO AGND. IT IS RECOMMENDED TO CONNECT TO BOTH AGND AND RFGND. 2. EXPOSED PAD 2. EP2 IS INTERNALLY CONNECTED TO RFGND. IT IS RECOMMENDED TO CONNECT TO BOTH RFGND AND AGND. Figure 1 Pin Configuration of ADGM1304 Rev D	NOTES 1. EXPOSED PAD 1. EP1 IS INTERNALLY CONNECTED TO AGND. IT IS RECOMMENDED TO CONNECT TO BOTH AGND AND RFGND. 2. EXPOSED PAD 2. EP2 IS INTERNALLY CONNECTED TO RFGND. IT IS RECOMMENDED TO CONNECT TO BOTH RFGND AND AGND. Figure 2 Pin Configuration of ADGM1304 Rev E

Table 6. Pin Function Descriptions

	Rev D	Rev E	
Pin No.	Mnemonic	Mnemonic	Description
1	IN1	IN1/SDI	Parallel Logic Digital Control Input 1/Serial Data Input. The voltage applied to this pin controls the gate of the MEMS switch from RF1 to RFC. In SPI mode, this is the serial data input pin. In parallel mode, if IN1 is low, RF1 to RFC is open (off). If IN1 is high, RF1 to RFC is closed (on). Parallel Logic Digital Control Input 2/Chip Select. The voltage applied to this pin controls the gate of the MEMS switch from RF2 to RFC. In SPI mode, this is the chip select pin. In parallel mode, if IN2 is low, RF2 to RFC is open (off). If IN2 is high, RF2 to RFC is closed (on). Parallel Logic Digital Control Input 3/Serial Clock. The voltage applied to this pin controls the gate of the MEMS switch from RF3 to RFC. In SPI mode, this is the serial clock pin. In parallel mode, if IN3 is low, RF3 to RFC is open (off). If IN3 is high, RF3 to RFC is closed (on). Parallel Logic Digital Control Input 4/Serial Data Output. The voltage applied to this pin controls the gate of the MEMS switch from RF4 to RFC. In SPI mode, this is the serial data output pin. In parallel mode, if IN4 is low, RF4 to RFC is open (off). If IN4 is
high, RF4 to RFC is closed (on).			
Analog Ground Connection.			

	Rev D	Rev E	
Pin No.	Mnemonic	Mnemonic	Description
10	RF4	RF4	RF4 Port. This pin can be an input or an output. If unused, connect this pin to RFGND.
12	RF3	RF3	RF3 Port. This pin can be an input or an output. If unused, connect this pin to RFGND.
15	RFC	RFC	Common RF Port. This pin can be an input or an output.
18	RF2	RF2	RF2 Port. This pin can be an input or an output. If unused, connect this pin to RFGND.
20	RF1	RF1	RF1 Port. This pin can be an input or an output. If unused, connect this pin to RFGND. 23
	Vositive Power Supply Input. The recommended decoupling capacitor to ground value		
is 0.1 uF. For the recommended input voltage for this chip, see the Specifications			
section.			

TYPICAL OPERATING CIRCUIT CHANGES FROM REV.D TO REV.E

ADGM1304 REV D TYPICAL OPERATING CIRCUIT

Figure 3 Typical Operating Circuit for ADGM1304 Rev D

ADGM1304 REV E TYPICAL OPERATING CIRCUIT IN PARALLEL MODE

Figure 4 Typical Operating Circuit in Parallel Mode for ADGM1304 Rev E

ON RESISTANCE (RON) PROPERTIES

The ADGM1304 MEMS switch is fully operational at $\mathrm{DC}(0 \mathrm{~Hz})$. It is recommended to refer to Table 7 which details the DC resistance (RON) performance and RON drift of the switch. Further discussion follows below with important typical performance plots shown. The RON performance of the MEMS switch is affected by part to part variation, channel to channel variation, cycle actuations, settling time post turn on, bias voltage and Temperature changes.

ON RESISTANCE SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 3.6, $\mathrm{AGND}=0 \mathrm{~V}, \mathrm{RFGND}=0 \mathrm{~V}$, all specifications minimum temperature $\left(\mathrm{T}_{\mathrm{MIN}}\right)$ to maximum temperature $\left(\mathrm{T}_{\mathrm{MAX}}\right)=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, after first actuation, unless otherwise noted.

Table 7.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
ON RESISTANCE PROPERTIES						
Initial On Resistance Properties						
On Resistance	RON			2.9	Ω	Drain source current (los) $=50 \mathrm{~mA}, 0 \mathrm{~V}$ input bias, at 1 ms
On-Resistance Match Between Channels	$\triangle \mathrm{RON}_{\text {СН_CH }}$			1	Ω	
On Resistance Drift						
Over Time ${ }^{1}$	$\triangle \mathrm{RON}_{\text {time }}$			-0.25	Ω	RON change from 1 ms to 100 ms after actuation
Over Actuations ${ }^{2}$	$\triangle \mathrm{RON}$		0.5		Ω	10^{9} actuations, switch is actuated at $25^{\circ} \mathrm{C}$ and RON is measured at $25^{\circ} \mathrm{C}$
				5	Ω	10^{9} actuations, switch is actuated at $85^{\circ} \mathrm{C}$ and RON is measured at $25^{\circ} \mathrm{C}, 1 \mathrm{kHz}$ actuating frequency, 220 mA load applied between toggles ${ }^{3}$

${ }^{1}$ Max RON over time is RON (max) $+\triangle$ RON $_{\text {TIME }}$ (max) $=2.65 \Omega$
${ }^{2}$ Max RON after 1Billion actuations is RON (max) $+\Delta \operatorname{RON}$ (max) $=7.9 \Omega$
${ }^{3}$ Actuating the switch at $85^{\circ} \mathrm{C}$ and measuring RON at $25^{\circ} \mathrm{C}$ is the most severe condition for ADGM1304 RON drift over actuations.

APPLICATION IMPACT EXAMPLE

System Error Considerations due to On Resistance Drift

ADGM1304 Ron varies over time and over actuations. In a 50 Ω system, the on-resistance drift over switch actuations can introduce system inaccuracy. Figure 5 shows ADGM1304 connected with the load in a 50Ω system. The system error caused by ADGM1304 RON drift can be calculated by equation(1)

Figure 650Ω system representation where the ADGM1304 is connected with the load

System Error (\%) $=$ R $\Delta / R L$
R $\Delta=$ ADGM1304 RON Drift
RL = Load Impedance
RS = Source Impedance
The ADGM1304 RON drift also effects insertion loss which need to be considered. The on-resistance impact on insertion loss can be calculated by the equation (2)

Insertion Loss $[d B]=10 \log (1+(R \Delta / R L))$
Table 8 shows the system error (\%) and insertion loss error caused due to ADGM1304 RON drift

Ron Drift ($\mathbf{\Omega})$	System Error (\%)	Insertion Loss Error (dB)
4.75	9.5	0.39
5	10	0.41

BOM SET Comparison

Package	Amkor BOM			ASE BOM		
	EMC	D/A	Wire	EMC	D/A	Wire
LFCSP	G770HCD	QMI 536 nonconductive	$\begin{aligned} & 1.3 \text { mils / } 2 \mathrm{~N} \\ & \mathrm{Au} \end{aligned}$	G700LYT	QMI 536 nonconductive	$\begin{aligned} & 1.3 \text { mils / } 2 \mathrm{~N} \\ & \mathrm{Au} \end{aligned}$

[^0]: ${ }^{1}$ Typical specifications tested at $25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$.

[^1]: ${ }^{1}$ Clamp overvoltages at INx pin by internal diodes. Limit the current to the maximum ratings given.
 ${ }^{2}$ This rating is with respect to the switch in the on position with no RF signal applied.
 ${ }^{3}$ This rating is with respect to the switch in the off position.
 ${ }^{4}$ Hot switching is not recommended.
 ${ }^{5}$ Take proper precautions during handling as outlined in the Handling Precautions section.
 ${ }^{6}$ A safe automated handling and assembly process is achieved at this rating level by implementing industry-standard ESD controls.
 ${ }^{7}$ If the device is dropped during handling, do not use the device.

